Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor.
نویسندگان
چکیده
GPRC6A is a Family C G protein-coupled receptor recently discovered and deorphanized by our group. This study integrates chemogenomic ligand inference, homology modeling, compound synthesis, and pharmacological mechanism-of-action studies to disclose two noticeable results of methodological and pharmacological character: (1) chemogenomic lead identification through the first, to our knowledge, ligand inference between two different GPCR families, Families A and C; and (2) the discovery of the most selective GPRC6A allosteric antagonists discovered to date. The unprecedented inference of pharmacological activity across GPCR families provides proof-of-concept for in silico approaches against Family C targets based on Family A templates, greatly expanding the prospects of successful drug design and discovery. The antagonists were tested against a panel of seven Family A and C G protein-coupled receptors containing the chemogenomic binding sequence motif where some of the identified GPRC6A antagonists showed some activity. However, three compounds with at least ∼3-fold selectivity for GPRC6A were discovered, which present a significant step forward compared with the previously published GPRC6A antagonists, calindol and NPS 2143, which both display ∼30-fold selectivity for the calcium-sensing receptor compared to GPRC6A. The antagonists constitute novel research tools toward investigating the signaling mechanism of the GPRC6A receptor at the cellular level and serve as initial ligands for further optimization of potency and selectivity enabling future ex vivo/in vivo pharmacological studies.
منابع مشابه
Molecular determinants of non-competitive antagonist binding to the mouse GPRC6A receptor.
GPRC6A displays high sequence homology to the Ca2+-sensing receptor (CaSR). Here we report that the calcimimetic Calindol and the calcilytic NPS2143 antagonize increases in inositol phosphate elicited by L-ornithine-induced activation of mouse GPRC6A after transient coexpression with Galpha(qG66D) in HEK293 cells. The calcilytic Calhex 231 did not modulate this response. A three-dimensional mod...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملDiscovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2.
The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly be divided into two groups with most likely two topographically distinct binding sites. The aim of the curr...
متن کاملNovel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)
Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry & biology
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2011